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Empirical Approaches to Risk and Uncertainty

Models of decision making under risk or under uncertainty often seek
to give a better account of observed behavior than expected utility.

Most experimental procedures elicit an agent’s preference by collecting
a finite number of binary choices between risky/uncertain outcomes.

A more recent strand of experimental procedures instead collects a
finite number of choices from (typically convex) budget sets.

E.g., a subject is presented with a portfolio problem where she has to
allocate money between two assets with state-contingent payoffs.

A budgetary choice reveals a preference over an infinite number of
alternatives; evaluating these data requires a new empirical method.
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The GRID Method

The contribution of this paper is to (a) develop and (b) implement an
empirical method that can be used to analyze portfolio decisions; it is
applicable to budgetary experimental data and to suitable field data.

A Generalized Restriction of Infinite Domains (GRID), or the GRID
method, can be used to test nonparametrically the expected utility
model and many of its generalizations; it can also be applied to test
models of intertemporal choice (such as discounted utility).

Our main methodological result is that a budgetary data set can be
rationalized by a given model if (and only if) it can be rationalized on
an appropriately modified contingent consumption space G ⊂ RS+.

I G is a finite grid that is constructed from the data.
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Revealed Preference Analysis

Let O = {(pt, xt)}Tt=1 be a finite set of price and demand observations
which has been collected from an individual consumer.

Every observation consists of a price vector pt = (pt1, p
t
2, . . . , p

t
`)� 0

and a consumption bundle xt = (xt1, x
t
2, . . . , x

t
`) > 0.

Definition: A utility function U : R`+ → R is said to rationalize the
data set O = {(pt, xt)}Tt=1 if, at every observation t = 1, 2, . . . , T ,

U(xt) > U(x) for any x ∈ {x ∈ R`+ : pt · x 6 pt · xt}.

Afriat (1967) asks the following question: What are the conditions on
O that are necessary and sufficient for it to have arisen from an agent
who is maximizing a nonsatiated utility function?
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Generalized Axiom of Revealed Preference

For any pair (xt, xs), we say that xt is directly revealed preferred to
xs (xt <∗ xs) if pt · xs 6 pt · xt; if pt · xs < pt · xt, then we say that xt

is directly revealed strictly preferred to xs (xt �∗ xs).

Motivation: For an agent maximizing a nonsatiated utility function U ,

xt <∗ xs =⇒ U(xt) > U(xs),

xt �∗ xs =⇒ U(xt) > U(xs).

Definition: A data set O = {(pt, xt)}Tt=1 obeys the Generalized Axiom
of Revealed Preference (GARP) if whenever there is a sequence of
observations (pti , xti) (for i = 1, 2, . . . , n) satisfying

xt1 <∗ xt2 , xt2 <∗ xt3 , . . . , xtn−1 <∗ xtn , xtn <∗ xt1 ,

then <∗ cannot be replaced with �∗ anywhere in the chain.
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GARP and Afriat’s Theorem

Lemma: A data set O = {(pt, xt)}Tt=1 that is collected from an agent
who is maximizing a nonsatiated utility function must obey GARP.

Afriat’s Theorem: Suppose that O = {(pt, xt)}Tt=1 satisfies GARP.
Then there are real numbers φt and λt > 0 (for all t) that solve the
following system of linear inequalities:

φt 6 φk + λkpk · (xt − xk) for all k 6= t.

Furthermore, O can be rationalized by U : R`+ → R taking the form

U(x) = min
t
{φt + λtpt · (x− xt)}.

Two things to notice about this result:

(1) Solving linear inequalities is computationally straightforward,

(2) U is increasing, concave, and continuous.
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Afriat’s Theorem

Afriat’s Theorem: The following four statements on the finite set of
observations O = {(pt, xt)}Tt=1 are equivalent:

(1) O is rationalizable by a nonsatiated utility function U ,

(2) O obeys GARP,

(3) O satisfies Afriat’s inequalities,

(4) O is rationalizable by a utility function U , which is increasing,
concave, and continuous.
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Contingent Consumption and Rationalizability

Now suppose that an agent is choosing contingent consumption, i.e.,

pt = (pt1, p
t
2, . . . , p

t
S),

xt = (xt1, x
t
2, . . . , x

t
S),

are vectors of state prices and contingent consumption, respectively.

The aim of this paper is to develop and implement revealed preference
tests on O for different models of choice under risk and uncertainty.

E.g., if we know the probability of state s to be πs > 0, how do we
test for rationalizability by expected utility (EU), i.e., that there is a
utility function u : R+ → R such that, at every t = 1, 2, . . . , T ,

S∑
s=1

πsu(xts) >
S∑
s=1

πsu(xs) for any x ∈ Bt,

where Bt = {x ∈ RS+ : pt · x 6 pt · xt}?
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Rationalizability by Expected Utility

The standard approach of Varian (1983) and Green and Srivastava
(1986) is to assume that u is increasing, concave, and continuous.

Optimality implies that there is some λt > 0 (for all t) such that

λtpts/πs ∈ ∂u(xts) for all s = 1, 2, . . . , S, t = 1, 2, . . . , T.

Therefore, for each (s, t), there is some βts > 0 such that

π1β
t
1

pt1
=
π2β

t
2

pt2
= · · · = πSβ

t
S

ptS
for all t = 1, 2, . . . , T.

Theorem: The data set O = {(pt, xt)}Tt=1 is EU-rationalizable with
π = {πs}Ss=1 by an increasing, concave, and continuous utility
function u if and only if there is some βts > 0 (for all (s, t)) such that

(1) whenever xts > xt
′

s′ , then βts 6 βt
′

s′ ,

(2) for every t = 1, 2, . . . , T , πsβ
t
s/p

t
s = πs′β

t
s′/p

t
s′ . Sufficiency
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Rationalizability by Expected Utility

This approach gives a simple linear test, i.e., O is EU-rationalizable
with π = {πs}Ss=1 if and only if there exists a solution to a particular
system of linear (in)equalities constructed from O and π.

But it relies on the sufficiency of the first order condition, which holds
when the preference over RS+ is convex and the budget set is convex.

I Convexity of the preference excludes, e.g., risk loving.

I Convexity of the budget set

I Excludes nonlinear pricing,

I Makes it difficult to extend the test in order to measure the
‘size’ of departures from EU-rationality, which is potentially
limiting in many empirical applications.
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Our Approach to Testing EU-Rationalizability
Definition: The data set O = {(pt, xt)}Tt=1 is EU-rationalizable with
π = {πs}Ss=1 if there is an increasing and continuous utility function
u : R+ → R such that, at every observation t = 1, 2, . . . , T ,

S∑
s=1

πsu(xts) >
S∑
s=1

πsu(xs) for any x ∈ Bt.

We want to develop a procedure that has the following features:

(1) It tests for EU-rationalizability as such, rather than the joint
hypothesis of EU-rationalizability and global risk aversion,

(2) It can be used to test models of choice other than EU, including
those which may allow for nonconvex preferences over contingent
consumption, e.g., rank dependent utility,

(3) It is applicable even when budget sets are nonconvex,

(4) It can be adapted to measure the size/significance of departures
from a particular model or notion of rationality.
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The GRID Test of EU-Rationalizability

Given O, define the set X = {xts : (s, t) ∈ {1, . . . , S} × {1, . . . , T}} ∪ 0,
and then the finite grid of points G = XS .

E.g., suppose that we observe x1 = (2, 4) chosen from B1, x2 = (6, 1)
chosen from B2, and x3 = (4, 3) chosen from B3, with π = (1/2, 1/2).

Then, X = {0, 1, 2, 3, 4, 6}, and G = X × X .

For EU-rationalizability, it is clearly necessary that there are real
numbers ū(0) < ū(1) < · · · < ū(6), such that, at every t ∈ {1, 2, 3},

1

2
ū(xt1) +

1

2
ū(xt2) >

1

2
ū(x1) +

1

2
ū(x2) for any x ∈ Bt ∩ G,

1

2
ū(xt1) +

1

2
ū(xt2) >

1

2
ū(x1) +

1

2
ū(x2) for any x ∈ (Bt\∂Bt) ∩ G.

It is also sufficient to guarantee EU-rationalizability by an increasing
and continuous function u : R+ → R that extends ū : X → R.

So we only need to check for EU-rationalizability on a finite grid of
points, which is a straightforward linear test.
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The GRID Test of EU-Rationalizability

X = {0, 1, 2, 3, 4, 6}, G = X × X
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The GRID Test of EU-Rationalizability

In fact, given the restriction ū(0) < ū(1) < · · · < ū(6), we only need to
check for EU-rationalizability against undominated grid points, i.e.,

ū(2) + ū(4) > ū(1) + ū(6), ū(2) + ū(4) > ū(3) + ū(1),

ū(6) + ū(1) > ū(0) + ū(3), ū(6) + ū(1) > ū(3) + ū(2),

ū(4) + ū(3) > ū(2) + ū(4), ū(4) + ū(3) > ū(6) + ū(1),

since π1 = π2 = 1/2.

In other words, imposing monotonicity on ū means that we only need
to check against grid points on the upper boundary of each budget.

Eliminating redundant EU-rationalizability constraints can in some
instances shrink the size of the linear program considerably.
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The GRID Test of EU-Rationalizability
Theorem: The data set O = {(pt, xt)}Tt=1 is EU-rationalizable with
π = {πs}Ss=1 if there is an increasing utility function ū : X → R such
that, at every observation t = 1, 2, . . . , T ,

S∑
s=1

πsū(xts) >
S∑
s=1

πsū(xs) for any x ∈ Bt ∩ G,

S∑
s=1

πsū(xts) >

S∑
s=1

πsū(xs) for any x ∈ (Bt\∂Bt) ∩ G.

Intuition: First we replace ū with the step function û : R+ → R such
that û(y) = ū(y) for all y ∈ X and û is constant between values of X .
Clearly, û rationalizes the data in the sense that

S∑
s=1

πsû(xts) >
S∑
s=1

πsû(xs) for any x ∈ Bt.

The only problem is that û is neither increasing nor continuous. But
it is possible to find another utility function u, arbitrarily close to û,
that is increasing and continuous which also rationalizes the data.
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The GRID Test of EU-Rationalizability

X = {0, 1, 2, . . . , 6}, ū(0) = 0, ū(1) = 1, ū(2) = 4, . . . , ū(6) = 9
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The GRID Test of EU-Rationalizability

Since the key to our test is the restriction of an infinite consumption
space to a finite grid, we refer this new method as the Generalized
Restriction of Infinite Domains (GRID).

It is ‘generalized’ because one could think of the domain restriction to
a grid as a generalization of the one used in Afriat’s Theorem.

I Both involve revealed preference relationships between the chosen
bundle xt and a finite subset of the budget set Bt.

I Afriat makes comparisons with Bt ∩ D, where D = {xt}Tt=1.

I The GRID method makes comparisons with Bt ∩ G.

I Notice that G contains D, which occurs since the GRID method
characterizes utility with added structure.
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The GRID Test in More General Settings

Suppose now that xt is instead chosen from a compact constraint set
Bt ⊂ RS+, so the data set is now O = {(xt, Bt)}Tt=1.

Typically, the utility function in any particular model of choice under
risk or under uncertainty takes the form

U(x) = φ(u(x1), u(x2), . . . , u(xS)),

where u : R+ → R is an increasing and continuous Bernoulli function,
and where φ : RS → R is an increasing and continuous function drawn
from the family Φ, which is specific to the model.

Definition: The data set O = {(xt, Bt)}Tt=1 is φ-rationalizable if there
is an increasing and continuous utility function u : R+ → R such that,
at every observation t = 1, 2, . . . , T ,

φ(u(xt1), u(xt2), . . . , u(xtS)) > φ(u(x1), u(x2), . . . , u(xS))

for any x ∈ Bt.
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The GRID Test in More General Settings

Given a data set O = {(xt, Bt)}Tt=1, define a discrete consumption set
X = {xts : (s, t) ∈ {1, . . . , S} × {1, . . . , T}} ∪ 0 and a grid G = XS .

Theorem: The data set O = {(xt, Bt)}Tt=1 is φ-rationalizable if there is
an increasing utility function ū : X → R so that, at all t = 1, 2, . . . , T ,

φ(ū(xt1), ū(xt2), . . . , ū(xtS)) > φ(ū(x1), ū(x2), . . . , ū(xS))

for any x ∈ Bt ∩ G,

φ(ū(xt1), ū(xt2), . . . , ū(xtS)) > φ(ū(x1), ū(x2), . . . , ū(xS))

for all x ∈ (Bt\∂Bt) ∩ G.

Many models of choice under risk and uncertainty can be described
within this framework, with each model leading to a different φ.

E.g., expected utility (EU) and subjective expected utility (SEU),
rank dependent utility (RDU), disappointment aversion (DA), choice
acclimating personal equilibrium (CPE), maxmin expected utility
(MEU), and variational preferences (VP). Models
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Concave Bernoulli Functions

A common assumption in applications of EU theory is that agents are
risk averse, which is equivalent to concavity of the Bernoulli function.

The GRID method neither requires nor guarantees that the Bernoulli
function is concave; this is important because a data set may well be
EU-rationalizable, but only with a nonconcave Bernoulli function.

However, we are able to extend the GRID method in order to provide
a test for concave expected utility (cEU), i.e., EU-rationalizability
with a concave Bernoulli function.

The same approach can be applied to test for rank dependent utility
with a concave Bernoulli function (cRDU), as well as disappointment
aversion with a concave Bernoulli function (cDA), while at the same
time continuing to allow for elation seeking.
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Implementation on Models of Choice under Risk

We implement an array of tests using data from the portfolio choice
experiment in Choi, Fisman, Gale, and Kariv (2007).

93 undergraduate subjects participated in the experiment at UC
Berkeley, each completing 50 decision problems under risk.

There were two states of the world, each occurring with a known
probability, and two Arrow-Debreu securities, one for each state.

In each decision problem, every subject was given a budget; income
was normalized to one, and state prices were chosen at random.

47 subjects received a symmetric treatment, where π1 = π2 = 1/2,
and 46 received an asymmetric treatment, where π1 = 1/3 (2/3).
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Implementation on Models of Choice under Risk

Choi et al. (2007) first implemented GARP, and then estimated a
parametric model of disappointment aversion (Gul, 1991), which
contains expected utility as a special case.

We conduct a parallel set of empirical analyses, but we maintain a
completely nonparametric approach throughout:

I We check GARP in order to test for utility maximization,

I We check F-GARP (Nishimura, Ok, and Quah, 2017) in order to
test for stochastically monotone utility maximization, i.e., for a
utility function obeying first order stochastic dominance (FOSD),

I We apply the GRID method in order to test (with and without
concavity of the Bernoulli function) for

I Rank dependent utility (RDU/cRDU),

I Disappointment aversion (DA/cDA),

I Expected utility (EU/cEU).
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Basic Rationalizability Results

π1 = 1/2 π1 6= 1/2

GARP 12/47 (26%) GARP 4/46 (9%)

F-GARP 1/47 (2%) F-GARP 3/46 (7%)

RDU 1/47 (2%)
RDU 2/46 (4%)
DA 1/46 (2%)

EU 1/47 (2%) EU 1/46 (2%)

cRDU 0/47 (0%)
cRDU 1/46 (2%)
cDA 1/46 (2%)

cEU 0/47 (0%) cEU 0/46 (0%)

Table: Pass Rates

The exact pass rates are low across the models we test, which is not
surprising given 50 observations on every subject in a rich (in terms of
relative price variation) experimental environment.

We need to modify our tests in order to measure the extent to which a
particular model is able to explain a given data set.
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Critical Cost Efficiency Index

In order to accommodate departures from rationality, we adopt an
approach first suggested by Afriat (1972, 1973) and Varian (1990).

The data set O = {(pt, xt)}Tt=1 is rationalizable by some family U if
there is a utility function U : RS+ → R belonging to U such that

U(xt) > U(x) for any x ∈ Bt = {x ∈ RS+ : pt · x 6 pt · xt}.

If no function in U rationalizes O, we can make the requirement less
stringent by shrinking all budget sets in O by a factor e ∈ [0, 1).

We find U in U such that U(xt) > U(x) for any x ∈ Bt(e), where

Bt(e) = {x ∈ RS+ : pt · x 6 e pt · xt} ∪ {x ∈ RS+ : x 6 xt}.

The largest e at which a data set passes the test is known as the
critical cost efficiency index (CCEI) associated with O and U .

Notice that Bt(e) is not a convex set, so any approach relying on the
sufficiency of first order conditions (see Slide 8) cannot be applied.
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Critical Cost Efficiency Index

e = 0.75, (2, 3) �∗e (4, 0), (4, 0) 6<∗e (2, 3)
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Rationalizability Results

π1 = 1/2 π1 6= 1/2
e = 0.90 e = 0.95 e = 0.90 e = 0.95

GARP 38/47 (81%) 32/47 (68%) GARP 37/46 (80%) 29/46 (63%)
F-GARP 30/47 (64%) 23/47 (49%) F-GARP 33/46 (72%) 26/46 (57%)

RDU 30/47 (64%) 23/47 (49%)
RDU 33/46 (72%) 24/46 (52%)
DA 20/46 (43%) 12/46 (26%)

EU 30/47 (64%) 18/47 (38%) EU 18/46 (39%) 12/46 (26%)

cRDU 24/47 (51%) 12/47 (26%)
cRDU 25/46 (54%) 14/46 (30%)
cDA 13/46 (28%) 6/46 (13%)

cEU 23/47 (49%) 10/47 (21%) cEU 11/46 (24%) 5/46 (11%)

Table: Pass Rates

The rationalizability picture changes substantially once we allow for a
degree of error in the form of cost inefficiencies.

E.g., about 81% (66%) of subjects pass GARP at efficiency thresholds
exceeding 0.9 (0.95), suggesting that a large fraction of subjects does
behave in a way that is broadly compatible with utility maximization.
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CCEI Distributions (π1 = 1/2)
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CCEI Distributions (π1 6= 1/2)
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Implementation on Models of Choice under Risk

Choi, Kariv, Müller, and Silverman (2014) correlated rationality
scores with observable characteristics and other covariates.

I Data were collected on 1,182 subjects in the CentERpanel (NL),
each completing 25 portfolio choice problems under symmetric
risk; the design was the same as in Choi et al. (2007).

Halevy, Persitz, and Zrill (2018) used a revealed preference approach
to decompose the distance to utility maximization into (a) basic
inconsistency, and (b) parametric misspecification.

I Data were collected on 207 subjects at UBC, each completing 22
portfolio choice problems; state probabilities were equal, and
state prices/income were determined ex ante.
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CCEI Distributions (Choi et al., 2014)
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CCEI Distributions (Halevy, Persitz, and Zrill, 2018)
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Summary of Main Empirical Findings

The following highlights some salient features of the data across the
three experiments that we examine:

(1) A significant minority of subjects either violate GARP and/or
F-GARP; the decisions of these subjects cannot be explained by
the EU, DA, or RDU models, all of which respect FOSD.

(2) Around half of the subjects who pass GARP (at some reasonable
efficiency threshold) are also compatible with the EU model.

(3) We find little evidence that the DA model accounts for the
behavior of subjects not accounted for by the EU model.

(4) There is some evidence that the RDU model explains a significant
part of the population not behaving as EU-maximizers.
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Conclusions

The GRID approach to testing models of decision making under risk
and uncertainty has the following properties:

(1) It avoids ancillary assumptions on the shape of preferences,

(2) It is easy to understand,

(3) It can be easily implemented,

(4) It is flexible enough to measure departures from a model,

(5) It facilitates comparison across models.
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Appendix



Rationalizability by Expected Utility

Theorem: The data set O = {(pt, xt)}Tt=1 is EU-rationalizable with
π = {πs}Ss=1 by an increasing, concave, and continuous utility
function u if and only if there is some βts > 0 (for all (s, t)) such that

(1) whenever xts > xt
′

s′ , then βts 6 βt
′

s′ ,

(2) for every t = 1, 2, . . . , T , πsβ
t
s/p

t
s = πs′β

t
s′/p

t
s′ .

Proof of sufficiency: Choose a nonincreasing and continuous function
v : R+ → R++ such that v(xts) = βts (for all (s, t)). [1]

Define a utility function u : R+ → R+ according to u(y) =
∫ y

0
v(z) dz.

Note that the utility function u is increasing, concave, and continuous
(since u′(y) = v(y) is positive, nonincreasing, and continuous).

By restriction [2], xt (for all t) solves the first order conditions for
EU-maximization; since u is concave, these conditions are necessary
and sufficient to establish a maximum. Back
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Testing Models of Choice under Risk/Uncertainty

In principle, the GRID procedure applies to a wide class of decision
making problems under risk and under uncertainty.

The conditions for objective expected utility are conveniently linear,
but for a number of models, our tests are bilinear, which is in general
a computationally hard problem.

However, many models have special properties that allow for an easy
implementation in practice, especially with a small number of states.

Our general solution strategy is to fix any bounded parameters (e.g.,
a simple probability in the case of two states), and then to solve the
corresponding linear problem.
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Testing Models of Choice under Risk
In the objective expected utility (EU) model, φ(·) =

∑S
s=1 πsus.

Our test involves finding ū(y) (for each y ∈ X ) that solves

S∑
s=1

πsū(xts) >
S∑
s=1

πsū(xs) for all x ∈ Bt ∩ G, etc.

In the choice acclimating personal equilibrium (CPE) model (Kőszegi
and Rabin, 2007), which contains EU as a special case,

φ(·) =

S∑
s=1

πsus +
1

2
(1− λ)

S∑
s=1

S∑
s′=1

πsπs′ |us − us′ |,

where λ ∈ [0, 2].

Our test involves finding ū(y) (for each y ∈ X ) and λ ∈ [0, 2] that
solves a set of bilinear inequalities.

This can be implemented straightforwardly by letting λ take different
values on [0, 2] and solving the corresponding linear problem.
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Testing for Rank Dependent Utility

In the rank dependent utility (RDU) model (Quiggin, 1982), an agent
ranks contingent claims and distorts their cumulative distribution.

An agent maximizing RDU attaches a probability to a state which
depends on the relative attractiveness of the outcome in that state.

When there are two states, ρs = g(πs) is the distorted value of the
true probability πs (for s = 1, 2); if u1 6 u2, then

φ(u1, u2) = ρ1u1 + (1− ρ1)u2,

and if u1 > u2, then

φ(u1, u2) = (1− ρ2)u1 + ρ2u2.

Our test involves finding ū(y) (for each y ∈ X ) and {ρ1, ρ2}; we let ρ1

and ρ2 take different values on a fine grid in [0, 1]2, subject to ρ1 6 ρ2

(if and only if π1 6 π2), and perform a series of linear tests.
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Testing for Disappointment Aversion

The disappointment aversion (DA) model (Gul, 1991) is a special case
of RDU with two states, coinciding when state probabilities are equal.

In the DA model, if xH > xL and the probability of H is πH , then the
agent behaves as though this probability is

γ(πH) =
πH

1 + (1− πH)β
,

for some β ∈ (−1,∞), and the utility of (xH , πH ;xL, 1− πH) is

γ(πH)u(xH) + [1− γ(πH)]u(xL).

Gul (1991) classifies β > 0 as disappointment aversion (γ(πH) < πH),
and β < 0 as elation seeking; β = 0 reduces to EU.

For DA, φ(uH , uL) = γ(πH)uH + [1− γ(πH)]uL, and our test involves
finding ū(y) (for each y ∈ X ) and β ∈ (−1,∞).
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Testing Models of Choice under Uncertainty

In the subjective expected utility (SEU) model, φ(·) =
∑S
s=1 πsus.

Our test involves finding ū(y) (for each y ∈ X ) and πs (for each
s = 1, 2, . . . , S) that solves the set of bilinear inequalities

S∑
s=1

πsū(xts) >
S∑
s=1

πsū(xs) for all x ∈ Bt ∩ G, etc.

The maxmin expected utility (MEU) model (Gilboa and Schmeidler,
1989) allows for ambiguity sensitivity; here we need to find a set Π of
distributions such that the data can be rationalized according to

φ(·) = min
π∈Π

(
S∑
s=1

πsus

)
.

Again our test involves solving a set of bilinear inequalities; in some
cases, this can be simple. Back
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